WORKSHEET 3.04 - SITUATION FOUR

Compile existing site-specific data and determine existing site imperviousness (I_{EXIST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{EXIST} represents the actual amount of existing impervious cover on the site.

A _{SITE}	=	acres
A _{EXIST} structures	=	acres
parking lot	=	acres
roadway	=	acres
other	=	acres
Total A _{EXIST}	=	acres
I _{EXIST}	=	(Total $A_{EXIST} \div A_{SITE}$) x 100
I _{EXIST}	=	% (expressed in whole numbers)

Compile post-development site-specific data and determine post-development site imperviousness (I_{POST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{POST} represents the actual amount of impervious cover on the site once the proposed development is complete.

A _{SITE}	=	acres
A _{POST} structures	=	acres
parking lot	=	acres
roadway	=	acres
other	=	acres
Total A _{POST}	=	acres
		(T-1-1-1 A) 400
I _{POST}	=	(Total $A_{POST} \div A_{SITE}$) x 100
I _{POST}	=	(expressed in whole numbers)

If $I_{\text{EXIST}} > 16\%$ and the existing impervious area is served by a BMP, proceed with calculation of pollutant loadings. Otherwise, refer to Section 3.4 of the Manual for correct development situation determination.

Calculate the pre and post-development pollutant loadings for the site using the Simple Method.

 $P \times P_{\perp} \times [0.05 + (0.09 \times I)] \times C \times A \times 2.72 / 12$ =

Where: $P_{\rm J}$ unitless rainfall correction factor

0.9 for all of Tidewater, Virginia

Р = annual rainfall depth in inches

43 for the Richmond Metropolitan Area

flow weighted mean concentration of total phosphorus C =

0.26 mg/l for the entire County

= I_{WATERSHED} = = average land cover condition of the Bay watershed

16 percent

Calculate the existing development load (L_{FXIST}):

 $L_{EXIST} = [0.05 + (0.009 \text{ x } I_{EXIST})] \text{ x } 2.28 \text{ x } A_{SITE}$

= [0.05 + (0.009 x _____)] x 2.28 x _____

_____ pounds per year L_{EXIST} =

Calculate the post-development load (L_{POST}):

 $L_{POST} = [0.05 + (0.009 \times I_{POST})] \times 2.28 \times A_{SITE}$

= [0.05 + (0.009 x ____)] x 2.28 x ____

pounds per year L_{POST} =

Calculate the pollutant removal requirement for this project (RR_{PRO,IECT}):

RR_{PROJECT} = L_{POST} - L_{EXIST}

_____ pounds per year

Calculate the overall pollutant removal requirement (RR_{TOTAL})

RR_{TOTAL} RR_{PROJECT} + RR_{EXIST}

RR_{EXIST} the existing pollutant removal requirement for the site

RR_{TOTAL} =

_____ pounds per year